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- ABSTRACT
In this paper, a theorem of J. L. Walsh, on differences of polynomials
interpolating in the roots of unity and in the origin, is extended to
differences of rational functions interpolating in more general sets. The
original result of Walsh canrbe described, as follows. Given any function
o , Al }
£(z) = 2 ajzJ analytic in the disk lz| ¢ p, where 1< p < o, let
j=0

pn(z;f) be the unique polynomial interpolant of f£(z) in the (n+1)-st roots

n .
of unity, and let Pn(z;f) = z ajzj, for every nonnegative integer n .
. 550
Then Walsh's result is that
lim {p (zif) - P_(2;€)} = 0, for all |z| < 02 . :

n<$oo
It is this overconvergence to zero, beyond the disk |z| < p of analyticity
of f(z), which is intriguing.
NG
Our generalization of Walsh's theorem is in two directions. First, we
show that an analogous overconvergence holds for differences of rational
interpolants to meromorphic functions F(z). Second, we show that the
defining interpolation points can be considerably more general than the roots
of unity and the origin. Finally, several concrete examples of our
generalization are given, one consisting in applications of Faber polynomials.
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SIGNIFICANCE AND EXPLANATION

.E anJ is analytic in the disk |z] < p , where

’ th:; £f(z) is well-defined at z =0 andon |z| = 1.
Thus, for each nonnegative integer n , there is a unique polynomial
pn(z;f), of degree at most n , which interpolates

f(z)
roots of unity, i.e.,

in the (n+1)-st
+1
pn(w;f) = f(w), for any w with wn =1,
I
and there is also a unique polynomial Pn(z;f) = z ajz , the n-th partial
j=0

sum of f(z), which interpolates £(z) in the origin. Professor J. L. Walsh
showed that
(1)

n-co

lim {pn(zyf) - Pn(Z;f)} =0,

for any z with |[z]| ¢ p2

wWhat is both surprising and intriquing is that this convergence to zero takes
place in a region larger than the disk of analyticity, [zl < p , of f£(z).
Our main result is to show that Walsh's result (1) can be extended to

rational interpolants of functions meromorphic in

lz| < p, the points of
interpolation being more general than the roots of unity and the origin. It
is also shown that, like Walsh's result (1), this extension is best possible.— |
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An Extension to Rational Functions of a Theorem of

J. L. Walsh on Differences of Interpolating Polynomials

E. B. Saffl, A. Sharma, and R. S. Varga2

$§1. Introduction.

Our main- purpose i8 to generalize, to the rational case, a well-known
Y and beautiful result of J. L. Walsh on the convergence of differences of
interpolating polynomials. To state this result, we first introduce some
needed notation.

Let A_denote the set of functions f(z) analytic in the disk
Jz| < p, where we assume that 1 < p < =. With us denoting the set of all
complex polynomials of degree at most m, let pn(z; f) € nh be the Lagrange

{ polynomial interpolant of f£(z) € Ap in the (n + 1)-st roots of unity, i.e.,

1.1) p 5 ) = £@), ¥ © such that o™t =1,
«©
" for each nonnegative integer n. Writing f(z) = z:ajzj for |z| < p, we
j=0

let
n
Pn(z; £f):= Za zj

3=0

be the associated n-th partial sum of “f, so that

1.2) P (z; £) - £() = o@E™!y, as z = 0.

lResearch supported in part by the National Science Foundaiion under Grant
No. MCS80-03185.

2Research supported in part by the Air Force Office of Scientific Research
Grant No. AFOSR80-0026, and by the Department of Energy Grant No. DE-AS02-
76ER02075.

sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




Letting
1.3) D, := {z € €: |z| < T} and _DT:- {zéc:!zlsﬂ,
then this particular result of Walsh (7; 8, p. 153] can be stated as

Theorem A. If f € Ap’ then the interpolating polynomials pn(z) of (1.1)

and Pn(z) of (1.2) satisfy

1.4 Uslp (6 - P (z; D) =0, ¥ (2] <0

n— ®

the convergence being uniform and geometric on any closed subset of D 2"
- p
More precisely, on any closed subset H of any DT with p < 7 < ®, there

holds
(1.5) lim sup{max ‘pn(z; £) - Pn(z; f)\}lln < J%.

n — zEu Y

Furthermore, the result of (1.4) is best possible in the sense that there

is some f(z) € Ap and some z with |2‘ = p2 for which pn(ﬁ; £ - Pn(i; )

does not tend to zero as n — @.

In a recent paper, Cavaretta, Sharma, and Varga [2] give several
generalizations of Theorem A for the case of polynomial interpolation.
Our present goal is to extend some of these results to differences of
rational functions which interpolate a meromorphic function. Although
our main result (cf. Theorem 2.1) deals with more general interpolation
schemes and their associated geometries, we first state, for purposes of
illustration, our extension of Theorem A where the interpolation points
are again the roots of unity and the origin.

For notation, for each nonnegative integer v and for each p, with

l<p<m let Mp(v) denote the set of functions F(z) which are meromorphic

with precisely v poles (counting multiplicity) in the disk Dp’ and which




are analytic at z = 0 and on |z| = 1. Given F € Mp(V), consider the

rational interpolant

v(z)sun’v(z)/vn’v(z), with un’ €mn_, v ve s

s v n ’

(1.6) Sn,v(Z; F)= Sn

of type (n, v) of F(z) which, in analogy with (1.1), is to satisfy

n+v+1
=

aa.7) sn’v(w) = FW), Y w such that w 1.

Similarly, consider the Pade rational interpolant (cf. Baker [1], Perron

(4D
(1.8) Rn’v(z; F) =Rn'v(z)-Pn’v(z)/Qn’v(z), with Pn,venn, Qn’venv,

of type (n, V) of F(2) which, in analogy with (1.2), is to satisfy

n+v+1l

1.9 Rn,v(z) - F(z) =0O(z ), as z = 0.

(We assume here and throughoﬁ]a—;e denominator polynomials vn,v (z), Qn,\; (z)
of (1.6) and (1.8) are normalized so as to be monic.)

It is important to note that the existence and uniqueness of the
rational interpolants sn,v(z) and Rn’v(z) of (1.7) and (1.9) are, for all
n large, guaranteed by a theorem of Montessus de Ballore [3]) and its
generalization due to Saff [5]; this latter result is stated in §2 as
Theorem B.

With the above notation, we shall prove in §3 the result of

Theorem 1.1. If F € Mp(v), and if {aj}*:l are the v poles of F in Dp
T ——————————— — G S— A, ——— S—

(listed according to multiplicities), then the rational interpolants Sn

of (1.7) and R of (1.9) satisfy
— r— n’v — ——tmne—ler

\Y
(1.10) r1'_1.::,[sn’v(z; F) -Rn’v(z; F)]=0, vz € npz,\jgl{aj},




the convergence being uniform and geometric on any closed subset of

DA U {a }. More precisely, on any closed subset 3 of any D\ U {a }
3 p- =1 _1=1

with p < 7 < @, there holds

(1.11)  lim sup {max 150, ; F) - R (2 F)\}I/“ 512-.
n-w z€ ? p

The result of (1.10) is best possible in the sense that, for any v 0, and

and for any p with 1 < p <&, therei_ngVGMp(v) such that

(1.12) lim sup { min 2|Sn’\’(a=; F,) - Rn,v(z; Fv)l} > 0.

[ T jelee

r We remark that the special case v = 0 of Theorem 1.1 reduces to
Walsh's Theorem A. We further note that the sharpness result (1.12) of
Theorem 1.1 generalizes the corresponding result for v = 0 of Cavaretta,

 Sharma, and Varga [2].

| Concerning the behavior of the {(monic) denominator polynomials of

the rational interpolants Sn,v(z; F) and Rn,v(Z; F) of Theorem 1.1, it

= is known from Saff's Theorem B (cf. §2) that

l y |

:lx.i.n:av“’\’@) = l11_1.11::°Ql."\,(2) = B(z):= i1"‘I=1(z ~o), Vz €¢,

and, moreover, as a special case of (2.22), that on each compact set H C ¢,

(1.13) 1lim sup [max]V (z) -B(z)l}l/n
z€

n —- ©

<[ max (1, |og])Vp,
i:l,noe’

and

(A.14)  lim sup (max|q (o) - 3@ s ( joex ey de-
Lo

n - ® =1, ’

Clearly, (1.13) and (1.14) together imply
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1/n
(1.15) lim sup {max |V (2) - Q_ _(2) <[ max a, la.1)3/e.
;m~ o zE€H | BV n,v ‘} i=1,- ',V | 1| "

But, as a special case of Corollary 2.4, we can improve (1.15) by means of

Corollary 1.2. With the assumptions of Theorem 1.1, there holds on every

compact set HC €

L . 1/n _1
(1.16) I:m-'s:p {:22 Vo, @ - @)} =3

The outline of the present paper is as follows. In §2, we state and
pProve our main results for general interpolation schemes, and in §3 we

consider some specific applications of these results.

§2. Main Results.

Our aim is to extend Theorem A in two directions. First, we wish
to consider triangular interpolation schemes that are associated with
planar sets more general than that of the disk. Second, we shall
replace polynomial interpolation to analytic functions by certain types
of rational interpolation to meromorphic functions.

For these purposes, let E be a closed bounded point set in the z-plane
whose complement K (with respect to the extended plane) is connected and
regular in the sense that K possesses a Green's function G(z) with pole
at infinity (cf. [8, p. 65]). Let Iys for o > 1, denote generically,

the locus
(2.1) Iy:= {z € €:G6(z) = log 0},

and denote by q: the interior of Tb.

Next, for each nonnegative integer v, and for each p, with 1 < 9 < o,

let M(Ep; v) denote the set of functions F(z) which are analytic on E and




v n

meromorphic with precisely v poles (counting multiplicity) in the open set
E. For F € M(Ep; v), we consider rational interpolation in the two

triangular schemes

81(0) BfO)
O, 5 5, 50

2.2) , 2.3) . . . ... ,
P e B

where we assume that no limits points of the tableaus in (2.2) or (2.3),
lie exterior to E. To be specific, we let r v(z) be the rational
?

function of the form

P, ,(2)
X - = D v
(2.4) rn’v(z, F) rn’v(z) E;LGTET’ pn’v € ™ qn,v € nv, qn,v monic,

m+vnn+v+1

i=1 , 1.e.,

which interpolates F(z) in the n + v + 1 points {8
+
I R N R L A A R

and we let ;n V(z) be the rational function of the form

. - nI\) ~ ~ .
(2.6) rn,v(z’ F) rn’v(z) ﬁ (z)’ P E Tn? qn,vETRf qn,v monic,

n+vhn+v+1

which interpolates F(z) in the n + v + 1 points {Bi , 1.e.,

@.7) (e(“”’) F(s(“+")). 1=1,2, “,n+v+l.

In the tableaus (2.2) and (2.3), we do not require that the entries in
any partichlar row consist of distinct points. 1In the case of repeated '
points, interpolation in (2.5) or (2.7) is understood to be taken in the

Hermite (derivative) sense.




T T

Unlike polynomial interpolation, the existence of the above rational

interpolants is by no means assured without further assumptions on the

behaviors of the triangular schemes. Also, to establish a theorem

(analogous to Theorem A) which asserts that the difference ;n v(z)- r v(z)
?

tends to zero in some ''large' region, we need to assume that the tableaus
(2.2) and (2.3) are, in some sense, ''close' to one another.

To specify these assumptions, set

n+l ( ) )
(2.8) w (z):= 1 (z-B), @ o (2):= I@e-8"),w (z)=W_, (z):= 1.
R g T '

Concerning the triangular scheme (2.2), we suppose that
2.9) lim |wn(z)|]',n = A exp G(2),
n— <
uniformly in z on each closed bounded subset of K, where A is the

transfinite diameter (or capacity) [8, §4.4] of E. We remark that the

existence of some triangular scheme [B } for E for which (2.9) holds, is
well-known; for example, on defining the tableau (B; )} to consist of

the Fekete points for E, then (2.9) holds (cf. [8, p. 172]). Next, since

each wj(z) in (2.8) is monic of precise degree j+1, there are unique

constants ¥,(n), 0 < j < n, such that

3

(2.10) W (2) = v (z) + E 7y (mw, ,(z), Yn=1.

j-1

For p fixed, we assume (as in Cavaretta, Sharma, and Varga [2, §10]) that

there exists a constant )\, with - < ) < 1, such that

1/n

(2.11)  lim sup | z @ @) )" < apd < 20,
[ ] j=o

n-‘
where A is the transfinite diameter of E. With the above assumptions, we

can show that, for each F € M(Ep; v) and for each n sufficiently large,




the rational interpolants r v F) and ;n,v(Z; F) of F(z) in (2.5) and

b

(2.7) do indeed exist and are unique. Our m2in result is

Theorem 2.1, Let p be fixed with 1 < p < e, and suppose that the tableaus

(2.2) and (2.3) have no limit points exterior to E and satisfy the

conditions (2.9) and (2.11). IfF € M(Ep; V), v& 0, and if {aj}j , are the

v poles of F in Ep\E (listed according to multiplicity), then the rational

interpolants rn,v(Z; F) of (2.5) and ?n’v(z; F) of (2.7) satisfy

(2.12) lim [‘fn NGRS ILE AW CH F)]=0, V z€E 2 A\ U {aj},

o ’ =1

the convergence being uniform and geometric on any closed subset of

v
E 2_)‘\ Ul{aj}. More precisely, on any closed subset ¥ of any E \le{or 1

with p £ 7 < », there holds
(2.13) lim sup{max |r (z; F) - r_ M CH F)‘}l/n < T/pz-;\.
n-~o ze§ MV !

We remark that while the rows of tableau (2.2) are defined for every
n=20,1, 2, -+, the tableau of (2.3) need only be defined for some
infinite increasing subsequence of nonnegative integers n, snd the
conclusions (2.12) and (2.13) of Theorem 2.1 remain valid for that sub-
sequence. As we shall see in §3, this observation will te useful in
studying Hermite interpolation.

Essential to the proof of Theorem 2.1 is the following extensionm,

due to Saff [5], of the Montessus de Ballore Theorem [3].

Theorem B. Suppose that F € M(E 3 V) for some 1 < p<e®, and V20,

and let {o,} denote the v poles of F in E\E Suppose further that

v
A J =1
the points of the triangular scheme




(0,

by ’

) 1)
LT

(2.14)

p (@) b(n)

(n)
by 7s By * Tntl

(which need not be distinct in any row) have no limit points exterior to

E, and that

n+l
(2.15) lim ‘ I (z
e i=1

_ bi(n))‘l/n =4 oxp G(2),

uniformly on each closed and bounded subset of K. Then, for all n

sufficiently large, there exists a unique rational function s, V(z)
b

of the form
8y, (2) ; ;
T e——te
(2.16) sn,v(z) hn,\)(z), gn,\) T hn,\) ﬁ\), h“,\) monic,
. (n+v) (n+v) . (n+vV)
which interpolates F(z) in tue points b1 s b2 s s bn+\)+1.

Each S, V(z) has precisely v finite poles, and as n —~ ®, these poles

9
approach, respectively, the v poles of F(z) in Ep\E. The sequence
v
{sn v(z)}n:bn converges to F(z) on Ep\U {cyj}, uniformly and geometrically
’ 0 =1

A%
on any closed subset of ED\ jul [dj}' lore precisely, on any

v
closed subset H of any ET\ U (aj} with 1 < T < p, there holds
=1

2.17)  lim sup {max |F(z) - s_ )| " < 1/p.

n—-o zE€H

Theorem B in particular implies that the monic denominator polynomials

of the s v(z) satisfy

=<

(2.18) lim h (z) =
e MV i=1

(z - o;)=: B(z),

[}




uniformly on each compact .-t of the plane. 1In the proof of Theorem 2.1,

we also need the following quantitative property.

Lemma 2.2. With the hypotheses of Theorem B, suppose that F(z) has a pole

of order m(< v) -a—t-aj’ where Q’j € 1"c (crj < p). Then (cf. (2.16)),

x 1/n ]
(2.19)  1lim sup|S=h_ (2,) <o,/p, for each k = 0, 1, ***, m-1.
n -« dzk n,v 3 T

Proof. With B{(z) as defined in (2.18), the function £(z):= B(z)F(z) is
analytic throughout Ep, and is nonzero at each point o i=1, *°*, V.
" On multiplying F(z) - s V(z) by B(z) hn V(z), it follows from (2.17) and
' ] ’

(2.18) that, for each 7 with 1 < 7 < p, there holds

1/n

(2.20) lim sup {max ‘f(z)hn’v(z) - B(z)gn,v(z)l} <7r/p.

n - © zer'T

More generally, on setting
D (@)= £@h () - B()g (),

gso that Dn(z) is analytic throughout Ep’ it follows from (2.20) and
Cauchy's formula that, for each nonnegative integer k,

k

2.21) lim sup {max 4 Dn(z)‘11/n <7tlp, for 1 <7 <op.

n -+ ZEF k
T

dz

Since B(ozj) = 0, then taking z = otj and T = 0, in (2.20) yields

b

1im sup ‘f(aj)hn,v(aj)‘l/n < cj/p,

n =-- «©
and since f(cyj) # 0, inequality (2.19) follows for the case k = 0. TFor
k=1, --+, m-1, inequality (2.19) is easily proved by induction, using

the move general estimates of (2.21), the Leibniz formula for differentiating

products, and the fact that B(k) (cvj) =0 for k=0, 1, ---, m-1. l




> ———y
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As a consequence ¢ f (2.19), on expanding each hn v(z) in terms of a
»

fixed Lagrange basis of polynomials, there holds on each compact set
Hceg,

(2.22)  liu sup {max |n_ @) - B s ( wmax o)/,
newo zE i=1,:-:*,v

where o, € [, for each i =1, : -, v.
i
It is clear from the hypothesis (2.9) of Theorem 2.1 that the results
of Theorem B and Lemma 2.2 apply to the triangular scheme of (2.2). The

next lemma establishes that the same is true for the triangular scheme of

2.3).

Lemma 2.3. With the hypotheses of Theorem 2.1, the polynomials an(z) of

(2.8) satisfy

1/n

(2.23) lim |§n(z)| = A exp G(z),
n-eo

uniformly in z on each closed bounded subset of K.

Proof. By assumption, the zeros of the polynomials ﬁn(z) have no limit
point exterior to E. Hence, on each compact set in K, the harmonic
functions % log ]Gn(z)] are, for n sufficiently large, uniformly bounded,
and so they form a normal family in K. Now, let R be any fixed number
with max{1l, px] < R< p. Since from (2.9),

lim [max |w, @1 = a r < 29,
o= z€1‘R

it follows from the assumption of (2.11) that

n 1/n \
lim sup|max 2 ‘}’j (n)“wj_l(z”] < Ap” < AR,

— er =0
n o R ]




12

and hence (cf. (2.10)), we have

(2.24) lim [max ‘En(z)le/n = lim [max |wn(z)!]1/n = AR.

n= © zEFR N~ © ZGFR

Noting that AR is the transfinite diameter of ER’ the result of (2.24)
implies, by a theorem of Walsh [8, Theorem 4, p. 163), that
(2.25) lim % log‘ﬁn(z)I = log A + G(2),

e o
uniformly on each compact set exterior to FR. But, as the functions
% log |§n(z)‘ form a normal family in K, then (2.25) necessarily holds

uniformly on each compact set in K, which gives (2.23). l
We can now give the

Proof of Theorem 2.1. By Lemma 2.3 and the assumption of (2.9), it

follows from Theorem B that, for each n sufficiently large, the rational
interpolants rn’v(z) of (2.5) and ?n,v(z) of (2.7) exist and are unique.
Furthermore, the monic denominator polynomials qn,v(z) and En’v(z)
satisfy

v
I (- ai)=: B(z),

(2.26) limq  (2) = lm §  (2) =
» il 1

I+ ®© n-+ © i

uniformly on every compact set of the plane.

Next, for convenience, set

(2.27) I (2):= qn’v(z)?an y(@FE).

(n+Vv) n+v+1 from (2.5),

Since rn i }i=1

V(z) interpolates F(z) in the points {B

bl

it follows, on multiplication by 4, v(z)ﬁn V(z), that an V(z)pn V(z) is
b ? ’ ’

the unique polynomial in nn~+v which interpolates Jn(z) in these n+v+1




13
points. Similarly, q (2)5 v (®) is from (2.7) the unique polynomial
+ +v+1 ,
inmn which 1nterpolates I (z) in the points {B(n V)qn 1\) . Since
n+yv i
F(z) is, by hypothesis, analytic on E, there exists a constant m > 1
such that F(z) is analytic on and interior to the level curve I"n. Then,
for each n sufficiently large, Hermite's formula gives
028 E @ oy =L (v, oy @® v @] I (D)t vate
: 9,0 % Pn,y 2m (t) t - 2) s ’
r n+\J
n
and
2.29) @3, (=) = ¢ By @ B @1 00
) qn,\) pn,\) 2ni LA (t) (t - 2) ’
\Y)
T

Kn (t, z) Jn(t)dt

\
\
On subtracting, we have
\
|

- ~ 1
(2.30) qn,v(z)pn,V(Z) -qn,v(z)pn,v(z) =5 . wn+v(t)§n+v(t) (t2)’
n
where
(2.31) Kn(t, z):= wn+v(t)w (z) - v (z)w (t).

Next, let {a;}jsl, s < v, denote the distinct poles of F(z) in Ep\E,
8
so that UJ a'afj} = U {or }. Let R be any constant such that max{1, p)‘]<R<p

j=1 j=1
and such that all the poles of F(z) lie interior to I‘R. Further, select s
*
small circles Cj:= {(t€e:|t - dj‘ = 5j} which are mutually exterior and
satisfy Cj o ER\E for each j =1, 2, **°, 8. Setting Cs+1:= I‘R, then
Cauchy's theorem applied to the integral of (2.30) gives, for all n

sufficiently large, that

s+1
(<.32) an,v(z)pn,\)(z) - qn,v(z)ﬁn,v(z) JEI Ij(n) @),
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where
-~ K (t, 2) J (t)dt
(n) el T n - .
(2.33) Ij (Z) Zﬂi‘é Wn_’,v(t)wn_’_v(t) (C-Z)’ J 1: 2’ ’ s+l.
]

In (2.33), the contour Cs+1 is taken to be positively oriented, while the
remaining contours Cj’ 1< j < s, are all negatively oriented.
To estimate the integrals in (2.33), we first note that using (2.10)

we can express Kn(t, z) as

n+yv
(2.34) K (t, 2) = Eo Y el (0w, @) - @w o (©)].

From the hypotheses (2.9) and (2.11), it then follows that, for each
T <P,

/n A

1 2
lim sup {max\Kh(t, z)| : t € FR’ z € FT1 < ATt

n — o

and from (2.9) and (2.23) we have

lim [minjw_, (®F , (@®)] : £ € 1" = eny?.
e ©

Further, we note from (2.26) and (2.27) that the functions Jn(t) are
uniformly bounded (independent of n) on the contour Cs+1 = FR. Putting

the above facts together yields from (2.33) that

2.35)  lin [wax|1®) )| : 2z €T b /RE, Tz,
n— o

*
Next, to estimate the integrals around the poles aj, we note that

for each j =1, 2, -+, s, I(n)(z) is just the negative of the residue

h

*
at t =, of the function

J




T r——
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K (t, 2) J_(t)
v ® , (E)(e-2)

(2.36)

*
If o €T ,, then it follows from (2.9), (2.11), (2.23), and (2.34) that for

73
each k =0, 1, *°°,
Bk 1/n A
(2.37) 1im sup [max |—K(o:,z)|:z€I‘] <A-rp,-rzp,
n = o at
and
ak 1 |1/n

(2.38) lim sup

n —

* 2 *
. - "n+v(t)an+v(t)| < 1/(Aaj) at t aj.

Furthermore, if o j is a pole of F(t) of order m, then from Lemma 2.2 we

have, for each k = 0, 1, -+, m-1,

lim sup |q(k) @ )‘I/n <cj/p, lim sup |q0‘)( )|1/n<0’j/p,

n— n-o
and, consequently, for such k

l/n o © /0)? at t =

dk *. m
(2.39) lim sup —E[Jn(t)(t-aj) ] 3

n—-e dt

On combining (2.37), (2.38), and (2.39) to estimate the residue at t = cx;

of the function in (2.36), we find that, for each j =1, 2, ..., s,

%*
c
(2.40) lim sup [max‘I(n)(z)\ z €T ]I/n < ——L- _pi = TT-)T’ TP,
.1

Thus, from (2.32) and the estimate of (2.35), it follows that

lim sup [mg;f |q (z)pn V(z) - q, v(z)'ﬁn v(z)“l/n < 'rpk/Rz, T20p,
n—ow z ’ ’ ’

and so, on letting R approach p and applying the Maximum Principle, we

have
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~ - 1/ 2
. (2.61)  Llim sup [max |§ (2)p, @ - q @B )| "sr/p7, 120

n-ow zEE:r

Finally, appealing to the equations (2.26), the desired conclusions (2.12)

and (2.13) of Theorem 2.1 then follow. .

3 Corollary 2.4. With the hypotheses of Theorem 2.1, there holds on every

compact gset N C ¢,

2.42)  lm sup [max |3, @) - q, ,@]1/7 s 17"

k 4 n--o z€H
2 Proof. Since 'cin (z) and q (z) are, for n large, each monic polynomials
—_— Y n,v
of degree v, the difference d_(z):= q (z) - ¢q (z) is a polynomial of
n n,v n,v
degree at most v-1. Moreover, dn(z) is the unique polynomial in -1

which interpolates the function
(2.43) G (z):= ('in,v(z)pn,\,(z) - qn’\,(z)in’v(Z))/pn’v(z)

in the Vv zeros of 9, (z). From Theorem B (cf. (2.26)), these zeros
9

A"
approach, respectively, the Vv poles of F(z) in Ep\E. Also, as

(2.44) lim Ph,v(® = B(z)F(z)=: f(z),

ne o
uniformly on compact subsets of Ep’ and as f(z) is analytic and different
from zero in each pole of F(z), then there exist s small circles
C.1 : ‘z - aj] = 53, j=1, **+, 8 (as in the proof of Theorem 2.1) such
that for n sufficiently large, pn’v(z) is different from zero on the closed

interior of each C,. Consequently, for n large, the function G, (z) is

3

analytic inside and on each C,, § = 1, *--, 8. Since the zeros of q, v(z)
?

j)
will eventually all be contained in the union of the interiors of the

circles Cj’ Hermite's formula again gives




N e N e

S
(2.45) 4 (2) = L = Vze€oc,

om0 \éj T O -2

where now the integration is taken in the positive sense around each Cj‘

But, from (2.44) and from (2.41) with T = p, we have for 1 = j < 5,

1/n ~ . ~ 1/n
lzm_.s:p [::22 |6, ()] 51;“‘_.82"[‘:2’5 195, (0P, () -q, () B | (©)]]
3 3 i
¥ <o/t = 1701

Using this estimate together with the limiting behavior (2.26) of the

Polynomials q, V(z), it follows from (2.45) that
]

1/n

[Py ———

f, lim sup [max ‘dn(z)‘] < l/pl-A,

n = ¢& .4

E | where ¥ is any compact set in the plane, which establishes (2.42). l

If only the triangular interpolation schemes are specified, but not

e 1 i 1 e A AR s AW 1

the point set E, then D. D. Warner has shown [9] that, under rather
mild regularity conditions, the schemes determine a geometric setting in
which Saff's Theorem B remains valid. Such assumptions lead to further

generalizations of Theorem 2.1.

§3. Some Examples

I 1 . T Bt P AR PRI O - 2 ¥ <O 5

In this section, we discuss some special cases of Theorem 2.1 and

Corollary 2.4. We begin with the results quoted in the introduction

concerning rational interpolation in the origin and in the roots of unity.

Example 1. Let E be the closed unit disk ‘z‘ < 1, so that E has capacity
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A = 1. The associated Green's function is then simply G(z) = log |z‘, and i
' the level curves f& are the circles |z| = 0, Next, select the n-th rows
of the tableaus (2.2) and (2.3) to consist, respectively, of all zeros

i and of the (n+l)-st roots of unity; that is, with the notation of (2.8),
, @3.1) v (2) = z“*l, ‘v‘vn(Z) =™ g,

Trivially, wn(z) satisfies (2.9) and, furthermore, the inequality of (2.11)

is valid, for every ¢ > 1, with A = O. Thus, Theorem 2.1 gives the

conclusions (1.10) and (1.11) of Theorem 1.1, provided that F(z) € Mp(v)
has all of its v poles exterior to E: |z| < 1. However, slight modifications
in the proof of Theorem 2.1 show that, for these special interpolation
schemes, we can indeed allow some or all of the V poles of F(z) to lie
in the punctured disk 0 < |z‘ < 1, and this will not effect the validity
of Theorem 2.1.
Next, we establish the sharpness assertion (1.12) of Theorem 1.1.
For any given p with 1 < p < ®, and any fixed complex o with 0 < ‘a‘ < p,

\a‘ # 1, the particular meromorphic function
P (g) o= - 4 L
3.2)  F@i= gt

is evidently an element of Mp(l). Because V=1 in this example, the

associated interpolants (cf. (1.6) and (1.8)) of %(z) are

s Up @) R A
Sn’l(z, F) = V;TIT;T, and Rn,l(z’ F) = 6;?;?;7,

where we vrite

Vn,l(z) =z + hn’ and Qn,l(z) =2z 4 7n.

. It can be verified that
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3.3 y - @n+2+o/n+2p-p_-a Y = on n+l + dn+1
noo, pn+2 _ a’nﬂi-Z ’ n P pt'|+2 + an+2 ’
and that
( () ) o V 1 ©) (zn+1 - pn+1) o vn 1(d) (zn-i-l - an+l)
U z) =2 - - - »
m,1 ® wi2 -1 (z-p) @1 (z-,
(3.4) J
Q1 @™ 0™ o j@e™ - M
Pn,l(z) =2- n+l n+l :
\ p (2 - p) o (2 - o)

Note that since p > |o:|, both )‘n and )’n tend, from (3.3), to -o as n—x.

This, of course, implies that the poles of Sn 1(z; f‘) and Rn 1(z; i‘) both
H ’

tend to @ as n—®, which is in agreement with Theorem B. Using (3.3) and

(3.4), straight-forward (but lengthy) calculations give

n 2
- .3 jp-a) (CHOI -2z)
(3-5) Sn,l(z’ F) -Rn,l(z’ F) 2n+4

+O(—1;), as n-o,
(2-0') (z - p) p

the last term holding uniformly on any bounded set in €\({a} U {p}). From

this, it follows that

(3.6) lim {min |S (z; F) (z; F)‘}
mee |7 t
-a 2 2 2eie - 2 2 2 o
= min = = — > 0.
ososom |ple- |3|p2 ool @+ 6P+

Thus, for the particular function i?(z) of (3.2), we see that (3.6)
implies (1.12) of Theorem 1.1, for the case v=1. It thus remains to
establish (1.12) for any integer v=2 and any 1 < p < . This is done
by using the previous construction as follows.

Let us regard the function F(z) of (3.2) as a function of z, o, and

p, i.e., f‘(z) = i‘(z; oy p). For any p with 1 < p < e®, and for any
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positive integer Vv, we set

- A,V VOV
(3.7) F (2):= F(z's &y P) S YT K €M ), i
where, as in (3.2), 0 < \a‘ < p and ‘a‘ # 1. Then, the rational
interpolants Sn,v (z; FV) and Rn,v(Z; Fv) of F\a are easily seen to be

related to the rational interpolants sn 1(::; i’) and Rn 1(z; %) of F
» ?

as follows:

. T V., 3 Y Y]
K S(Ml)v‘l,\’(z’ FV) £ Sm’l(z H F( ;@ , P ))’
J (3.8)
R(MI)V'I,V(z; §V) e Rm,l(zv.’ %('; Q’v, p\)))’ ms= 1, 2,

! Because of the relationships of (3.8), it follows from (3.6) that

| lim {min  |S (z; F) - R (z; F){3
lin ‘z‘-pz‘ @ )v-1, v& @H)v-1, v& R

> !PV - diJ'_z (ZPZV - Pv - J'_a_!v) > 0,

o2 + M2 e® + )

and hence

lim sup { min ‘Snv (z; f‘v) - R, (z; f‘v)\} > 0,

SR UEL

for each positive integer v, and each p with 1 < p < ®, This completes

’ the proof of the sharpness assertion of Theorem 1.1.

Finally, we remark that Corollary 1.2 is an immediate consequence

of Corollary 2.4 with A = 0.

Example 2. If we wish to compare (Padé) rational interpolation in the
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origin with Hermite rational interpolation of order k& 2) in the roots

of unity, we again take E to be the closed unit disk and we set
w (Z) oz zn n=1, 2 e s "‘;y (z):: (zm - l)k m=1 2
n-l . ] ] ] ’ km_l » . Py »

Then, it can be verified that the inequality of (2.11) (with n = km)
holds for every ¢ > 1 with A = 1 - 1/k. Thus, Theorem 2.1 (modified to
allow poles in the punctured disk 0 < lz‘ < 1, as discussed in Example 1)

gives for any F € Mp v),
R v
3.9) lim {skm-l-v y@ F) - Rim-1-v V(z; F)}=0, Y z€D 1+1/k\U {C‘j%
me ! g p =1

where Skm-l-v, V(Z; F) is the rational function of type (km-1-v, v) which
interpolates F(z) in the m-th roots of unity, each considered of
multiplicity k, and where R‘km-l-v, v(z; F) is the corresponding Padé
approximant to F(z). We note that the result (3.9, for the case v = 0

appears as the case £ = 1 in Cavaretta, Sharma, and Varga [2, Theorem 3].

Example 3. Here we take E to be the real interval [-1, 1], which has
capacity A = 1/2. The level curve I‘c (© > 1) for E is the ellipse in
the z-plane with foci + 1, and semi-major axis (@ + 1/0)/2. With

Tn(x) = cos(n arc cos x) denoting the familiar Chebyshev polynomial (of
the first kind) of degree n, we shall compare lLagrange interpolation in
the Chebyshev zeros with Hermite interpolation of order k & 2) in

these zeros. For this purpose, we define (cf. (2.8)) the monic polynomials

v @)= 2T @), n=1,2, 05 B @ @0 @), =1, 2,

It is well-known (cf. [8, p. 163)) that the w (z) satisfy (2.9), and




moreover, it can be verified that the inequality of (2.11) (with
n=km - 1) holds with A = (k-2)/k for every p > 1. Hence, if F(z) is

analytic on [-1, 1] and meromorphic with precisely v poles faj j -1

inside the cllipse Fp (i.e., F € M(Ep; Vv)), then Theorem 2.1 gives

(3.10) lim {T (z; )} =0, Yz €E U{a ].

o~ ©

am-1-v, v F) = Ty, (k+2)/k

As a special case, we see that the choice k = 2 gives convergence to zero

v
in E %\ Lj{aj}, which is reminiscent of the result of Theorem 1.1.

P 3=l
(containing more than one point) whose

Example 4. Let E be a closed bounded point set i

complement X is simply connected, and let En(z), for n=0, 1, -+, denote
the Faber polynomials [6, Chap. 2] for E. For simplicity, we assume

that E has capacity 4 = 1. If w = ¢ (z) maps, one-to-one and conformally,
the complement K onte the domain |w| > 1 so that () = @, then En(z) is
the principal part of the expansion of &Kz)]nas a Laurent series in a

neighbrrhood of z = ®», Specifically, if

(3.11) v(2)=2+c0+7+——2+..

in & neighbornood of z = &, then

L (n)
r ao_ (n) (n) n-2 . (n) ~1 €2 .
(3.12) Lo (2)] 1 teo 2+ +og AT e,
and, by dafionition,
G133 (2):= z" + crf'_‘i Pt cé“), n=0,1,

It is known that the zeros of 3n(z) have uo limit points in K and, moreover

£. (6, p. 1357)

-
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(3-14)  lim \3n(z)1‘/“ = @],
n—®

uniformly on each compact set in K. Choosing the interpolation scheme

of (2.2) to consist of the zeros of the Faber polynomials (i.e., setting
wn_l(z):= En(z)), then the condition of (2.9), with G(z) = log|¢(z)‘, is
clearly satisfied. For a comparison scheme, we consider Hermite interpolation

of order 2 in these Faber polynomial zeros, i.e., we set
G.15)  #_ . (@):=[F @) m=1,2, -
: 2m-1 ) m ’ s “

Now, if z = { (w) denotes the inverse of the fumnction w(z), we have

(cf. {6, p. 138])

2 2m (m)
(3.16) [3 ()] = L a,"”’ 3, (2),
m j=0 3 3

i where, for any r > 1,
‘ 2

A F_ o))
'f (3.17) e —L;FT— dw, §=0,1, “**, 2m.

jwi=r

Now, it is known [6, p. 132] that
.18 Faw =v+iud, v,

where Mm(I/w) is analytic at w = @ and has a laurent series converging

for all ‘w‘ > 1. Substituting (3.18) in (3.17) gives
Coe™™ 2wm’1Mm(1/w))

' (m) ..,_1__
(3.19) aj = 7m J T

dw, § =0, 1, -*-, 2m.

Jwl=r N

From this, we immediately see that

3.200 a® -, a§m) =0 form< § < 2m.

2m

kb b it o e




o

T

-

Next, we estimate the remaining coefficients aj(m), 0< j<m. For

0< j <m, we have from (3.19) that

2wm-1M (1A dw
(3.21) aj(“‘) = 5-11;; f WJL L, 0<3j<n.
jwi=r

Writing M QJ) = E)'(m) -k for all |w‘ > 1, then it is evident that
k= 0

(3.22) aj( ) . f‘;_l, 0<34<nm.

Let 1 <o < p. Then, we can obviously write

R IRASRES S IR RN IS
lw|=

From (6, p. 134, inequality (%], \% Mmé’)‘ S u@©)” for ‘w‘ = 0, where u(©)

is a positive constant, independent of m. Thus, from (3.23),

\7‘,(:‘;_1‘ < @)™, 0SS} <m.

Hence, from (3.20) and (3.22), we have

2m-1
(3.24) lim sup {2 ‘a(m)‘pj]UZm - lim sup {2 ‘a(m)‘p }1/2m
© j=0 - jno

m~-1
< lim sup {2u (o) = sz-j pj]l/Zm = Bp.

m - J:O

Letting 0 tend to unity, we see that for n = 2m - 1, inequality (2.11)

holds with A = %— (since A = 1). In a similar (but more tedious fashion),

it can be shown that if we consider Hermite interpolation of order k & 2)

in the zeros of the Faber polynomials, i.e., (cf. (3.15)) if

¢.25) % (@:=[F @)%, m=1,2, -,
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and (cf. (3.16)) if
G.26) [F (@)1= 5 2™ a0 3.0, i
m 3 ]
3=0
then (3.24) can be generalized to
km-1
(3.27) limsup { D ‘aj(m) (k)‘pj}”km < @ loyl/k, |
m=-e j=0
so that on letting ¢ again tend to unity, we see inequality (2.11) now
, holds with A = 1 - 1/k. In other words, Theorem 2.1 gives for any
F € M(E,; V),
v v V
L - - - . = !
h - (3.28) ;ft{gm_l_v, v B -Re gy, @ F)}=0, Vz¢€ Epl+1/1}\jgl{aj'h

i
- where ékm-l-v, N (z; F) is the rational function of type (km-1-v, V) ‘
v ! which interpolates F(z) in the zeros of the Faber polynomial 3km(z), |
while ﬁkm-l-v, v (z; F) is the rational function of type (km-1-v, V) which ;
interpolates F(z), with multiplicity k, in each of the zeros of the Faber
polynomial 3;(2).
Finally, although the set E = [~1, +1] of Example 3 is a special
case of Example 4, we note however that the comparison of Lagrange
interpolation in the zeros of the Faber polynomial Emk(z), with that of
Hermite interpolation of order k in the zeros of the Faber polynomial

3m(z), gives the associated exponent (cf. (2.11)) of Example 3 as

A= Eig, which is smaller than the associated exponent A'==Eil of
Example 4.

(o T IPREW 4@'
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